Isoperimetric inequalities of Euclidean type in metric spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoperimetric Inequalities of Euclidean Type in Metric Spaces

1.1. Statement of the main result. The isoperimetric problem of euclidean type for a space X and given classes Ik−1, Ik, and Ik+1 of surfaces of dimension k − 1, k, and k + 1 in X , together with boundary operators Ik+1 ∂ −→ Ik ∂ −→ Ik−1 and a volume function M on each class, asks the following: Does there exist for every surface T ∈ Ik without boundary, ∂T = 0, a surface S ∈ Ik+1 with ∂S = T a...

متن کامل

Diameter-volume Inequalities and Isoperimetric Filling Problems in Metric Spaces

In this article we study metric spaces which admit polynomial diameter-volume inequalities for k-dimensional cycles. These generalize the notion of cone type inequalities introduced by M. Gromov in his seminal paper Filling Riemannian manifolds. In a first part we prove a polynomial isoperimetric inequality for k-cycles in such spaces, generalizing Gromov’s isoperimetric inequality of Euclidean...

متن کامل

Isoperimetric Inequalities and the Asymptotic Rank of Metric Spaces

In this article we study connections between the asymptotic rank of a metric space and higher-dimensional isoperimetric inequalities. We work in the class of metric spaces admitting cone type inequalities which, in particular, includes all Hadamard spaces, i. e. simply connected metric spaces of nonpositive curvature in the sense of Alexandrov. As was shown by Gromov, spaces with cone type ineq...

متن کامل

On Isoperimetric Inequalities in Minkowski Spaces

In Geometric Convexity, but also beyond its limits, isoperimetric inequalities have always played a central role. Applications of such inequalities can be found in Stochastic Geometry, Functional Analysis, Fourier Analysis, Mathematical Physics, Discrete Geometry, Integral Geometry, and various further mathematical disciplines. We will present a survey on isoperimetric inequalities in real, fin...

متن کامل

Sharp and Rigid Isoperimetric Inequalities in Metric-measure Spaces with Lower Ricci Curvature Bounds

We prove that if (X, d,m) is a metric measure space with m(X) = 1 having (in a synthetic sense) Ricci curvature bounded from below by K > 0 and dimension bounded above by N ∈ [1,∞), then the classic Lévy-Gromov isoperimetric inequality (together with the recent sharpening counterparts proved in the smooth setting by E. Milman for any K ∈ R, N ≥ 1 and upper diameter bounds) hold, i.e. the isoper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: GAFA Geometric And Functional Analysis

سال: 2005

ISSN: 1016-443X,1420-8970

DOI: 10.1007/s00039-005-0515-x